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Abstract
We study the phenomenon of size segregation, observed in models of vibrated
granular mixtures such as powders or sand. This consists of the de-mixing of
the different components of the system under shaking. Several mechanisms
have been proposed to explain this phenomenon. However, the criteria for
predicting segregation in a mixture, an issue of great practical importance, are
largely unknown. In the present paper we study a binary hard-sphere mixture
under gravity on a three-dimensional lattice using Monte Carlo simulations.
The vertical and horizontal segregation observed during the tap dynamics is
interpreted in the framework of a statistical mechanics approach to granular
media in the manner of Edwards. A phase diagram for the vertical segregation
is derived, and compared with the simulation data.

1. Introduction

In the present paper we study the phenomenon of size segregation in models of granular
media using a statistical mechanics approach in the manner of Edwards [1]. Segregation is a
ubiquitous and intriguing phenomenon observed in vibrated granular mixtures such as powders
or sand: in the presence of shaking the system is not randomized, but its components tend
to separate [2, 3]. Recently it has become clear that powders not only segregate but can also
spontaneously form patterns in the process (see for instance [2–7]). Several mechanisms have
been proposed to explain these phenomena [7–15], but the criteria for predicting segregation in
a mixture, an issue of great practical importance, are still largely unknown [2]. In the present
paper we show that the segregation process observed using Monte Carlo simulations in a lattice
model of a hard-sphere binary mixture under gravity subject to ‘taps’ can be well understood
in Edwards’ scenario.

Edwards’ original hypothesis [1] is that, by gently shaking a granular system under the
constraint of fixed volume V , the distribution over the mechanically stable states where the
system is found at rest is uniform [16–20]. In other words, the macroscopic stationary state
reached by gently shaking the system can be characterized by a thermodynamic parameter,
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the Edwards compactivity, X−1 = ∂ ln �
∂V , where � is the number of mechanically stable

states corresponding to the fixed volume V . This suggested the possibility of defining a
configurational entropy (similar to that of glassy systems)1, S = ln �, for granular media, and
to treat non-thermal systems (such as granular media in their mechanically stable states and
glassy systems blocked at T = 0 in their inherent structures [21]) in the framework of a unified
statistical mechanics approach [16–20]. More generally, it was shown [18–20] that more than
one ‘thermodynamic’ parameter may be required to describe the stationary state, even though
the criteria for determining these parameters a priori may not be easily accessible.

In previous papers [20] we have checked the validity of Edwards’ approach in a simple
lattice model of hard spheres under gravity. We found that the ‘inherent states’ (defined as
the stable configurations in the potential energy landscape) explored at stationarity, by shaking
the system using sequences of taps, are distributed according a generalized Gibbs measure
obtained by maximizing the configurational entropy under suitable constraints, such as a given
average energy. The macroscopic state reached by the system can therefore be completely
characterized by the configurational temperature2, T −1

con f ≡ βcon f = ∂ ln �
∂ E , the thermodynamic

parameter conjugate to the energy.
More specifically [20], in a system made of particles of two different sizes under gravity,

two configurational temperatures must be introduced. Here we present the results obtained by
studying the system using Monte Carlo simulations and the consequent interpretation of the
segregation phenomena observed.

In section 2, the hard-sphere binary mixture and its description in statistical mechanics
terms are presented. In sections 3 and 4, the results for vertical and horizontal size segregation
obtained using Monte Carlo simulations are interpreted in terms of such a statistical mechanics
approach. The correspondence with coarsening phenomena [7, 22]3 is also discussed in some
detail.

2. The model

We study a binary system of hard spheres under gravity; the system is made up of two species,
1 (small) and 2 (large), with grain diameters a0 and

√
2a0, on a cubic lattice of spacing a0 = 1.

We set the units such that the two kinds of grain have masses m1 = 1 and m2 = 2, and
the gravitational acceleration is g = 1. The hard core potential, Hhc, is such that two large
nearest neighbour particles cannot overlap. This implies that only pairs of small particles can
be nearest neighbours on the lattice. The overall Hamiltonian of the system is:

H = Hhc + m1gH1 + m2gH2, (1)

where H1 = ∑(1)
i zi , H2 = ∑(2)

i zi , and the height of i th particle is zi . The two sums are
over all particles of species 1 and 2 respectively. The gravitational energies are E1 = H1 and
E2 = 2H2.

The blocked configurations are visited by using tap dynamics, where each tap consists
of raising the Monte Carlo bath temperature from zero to a value T� (defined as the ‘tap

1 �(E, V, . . .) is the number of inherent states corresponding to a fixed set of thermodynamic quantities, such as
energy E , volume V , etc.
2 βcon f coincides with the Edwards compactivity in the case where the density is uniform in the bulk and the energy
is given only by the gravitational term.
3 The presence of coarsening phenomena in granular compaction was discussed in [22]. The possibility of describing
the size segregation patterns observed in binary mixtures of particles under gravity as a critical phenomenon was
suggested in [7]. A horizontally shaken shallow layer of a binary mixture of dry particles was experimentally studied.
Stripes orthogonal to the direction of vibration appeared and their average width increased as a function of time as a
power law, t0.25. The existence of a critical event associated with the onset of the segregation pattern was suggested.
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amplitude’) and, after a lapse of time τ0 (the ‘tap duration’), quenching it back to zero. By
cyclically repeating the process the system explores the space of the inherent states (see [20]
for details). In [20], we found that the stationary state reached by the system in this way
can be described by a generalized Gibbs measure obtained by maximizing the configurational
entropy under the constraint that the energies of the two species are independently fixed.
Specifically, the probability distribution, Pr , of observing the system in the generic inherent
state r corresponding to an energy E1r for the small particles and E2r for the large particles is
given by:

Pr = e−β1 E1r −β2 E2r

Z
, (2)

where β1 and β2 are the thermodynamic parameters, called ‘inverse configurational
temperatures’, conjugate respectively to the small particle energy and to the large particle
one.

In the whole configurational space, the system can thus be described by an effective
Hamiltonian

He f f = Hhc + β1 H1 + 2β2 H2 + δ, (3)

where the term δ is zero if the configuration is an inherent state and infinite otherwise.
Consequently, the study of the model, equation (1), can be accomplished in the context of
statistical mechanics by solving the problem connected to the effective Hamiltonian, He f f . In
this way the properties (such as size segregation patterns, ‘Brazil nut’ and ‘reverse Brazil nut’
effects) of the model, equation (1), under the tap dynamics [2–7, 10, 11, 15] could be predicted.

3. Vertical segregation

In figure 1 we show the diagram for the vertical segregation obtained by simulating the effective
Hamiltonian, equation (3), using Monte Carlo techniques [17]. The full circles in the figure
correspond to pairs (T1, T2) in which difference between the average heights of small and
large grains, �h = h1 − h2 (h1 = H1/N1 and h2 = H2/N2), is equal to zero. By decreasing
T2 at a fixed value of T1, a crossover at T2 = T ∗

2 (T1), from a region where large particles
are on average above (the ‘Brazil nut’ effect) to a region where they are below (the ‘reverse
Brazil nut’ effect [12]) small particles, is observed. Solving the model, equation (3), in mean
field approximation [20, 23], we have found that this crossover corresponds to the drift of the
minimum of the free energy, F = − ln Z , in the inherent space from negative to positive values
of the vertical segregation parameter, �h = h1 − h2.

We have checked this prediction by simulating the model, equation (1), using Monte
Carlo techniques. N1 small particles and N2 large particles4 are confined in a box of height Lz

and linear size in the horizontal directions L (in the horizontal directions periodic boundary
conditions are considered). At t = 0 the system is prepared in a random loose stable packing;
then it evolves under the tap dynamics. At stationarity the average heights of small and large
grains, h1 and h2, are measured. In figure 2, the differences between average heights of small
and large grain, �h = h1 − h2, are plotted as a function of the tap amplitude, T� , for the tap
duration τ0 = 10 MCS5. As we can see, at high T� , the larger grains are found above the
smaller ones as in the ‘Brazil nut’ effect, whereas at low T�, the opposite is found (the ‘reverse
4 We consider a fixed density ρ1 = N1/Lz ∗ L2 = 0.15 and ρ2 = N2/Lz ∗ L2 = 0.05, and box height Lz = 4, and
four different values of the horizontal linear size L , to study the dependence of the cluster properties on the cluster
size.
5 τ0 is measured in Monte Carlo steps (MCS), where 1 MCS corresponds to N attempts to move a particle randomly
chosen, and N = Lz ∗ L2 is the site number of the box.
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Figure 1. The diagram for vertical segregation (obtained by Monte Carlo simulations of the effective
Hamiltonian, equation (3)) in the plane of the configurational temperatures (T1, T2) associated with
the two species in the mixture. The region marked ‘BNE’ corresponds to the ‘Brazil nut effect’,
where larger particles are on average on the top of the system. The ‘RBNE’ region corresponds to
the reverse situation. The system contains N1 = 120 small particles and N2 = 40 large particles
confined in a three-dimensional box of horizontal linear size L = 20 and height Lz = 4. The
continuous curve is a guide for the eye.

Figure 2. The differences between average heights of small and large grains, �h = h1 − h2,
measured during the tap dynamics, in the hard-sphere binary mixture under gravity, as a function
of the tap amplitude T� (in units m1ga0), for the tap duration τ0 = 10 MCS, and different values
of the linear size L = 20, 40, 60, 80.

Brazil nut’ effect). In this scenario the system (evolving under the tap dynamics with fixed
duration, τ0) can be thought to be following a given path, T2 = T2(T1) (where T1 = T1(T�, τ0)),
in the (T1, T2) plane, crossing from the ‘Brazil nut’ effect region to the ‘reverse Brazil nut’
effect region.
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Figure 3. Particle configurations on the bottom layer during the tap dynamics with tap duration
τ0 = 10 MCS and tap amplitude T� = 0.35, at times t = 0 (left) and 40 000 (right).

(This figure is in colour only in the electronic version)

Figure 4. The contact numbers, Nb , and the cluster numbers, Nc (per particle), of the small particles
plotted as a function of the tap amplitude T� (in units m1ga0), for a tap duration τ0 = 10 MCS,
and different values of the linear size L = 20, 40, 60, 80.

4. Horizontal segregation

At low tap amplitudes, T� , the formation of clusters made up of one type of particle is observed
during the dynamics. In figure 3, particle configurations on the bottom layer are shown at
different times during the tap dynamics.

In the model studied here, a cluster of small particles is a set of nearest neighbours,
whereas a cluster of large particles is a set of next neighbours (since two large particles cannot
be nearest neighbours). We have studied the properties of such clusters at stationarity. In
figures 4 and 5 the contact numbers, Nb, between one type of particle and the cluster numbers,
Nc (per particle), are shown respectively for small and large particles. For both large and
small particles, we observe an increase in the contact number Nb , and a decrease in the cluster
number Nc , as the tap amplitude T� decreases. It is clear that as T� is lower, the stationary
state reached by the system under shaking is characterized by larger clusters, each one made
up of one type of particle (see also figure 3).
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Figure 5. The contact numbers, Nb , and the cluster numbers, Nc , (per particle), of the large particles
plotted as a function of the tap amplitude T� (in units m1ga0), for a tap duration τ0 = 10 MCS,
and different values of the linear size L = 20, 40, 60, 80.

In order to gain information about the time evolution of the various length scales present
in the system, we have also measured the dynamic structure factor, Sp(k, t), independently for
the small and the large particles on the bottom layer (corresponding respectively to p = 1 and
2). For continuous systems, the dynamic structure factor is defined as the Fourier transform
of the density–density correlation function; for the discrete system we have studied, it is

Sp(k, t) ≡ 1

Nb
p

〈 (p)∑
i j

eik·(ri −r j )

〉
, (4)

where the sum
∑(p)

i j is done over all particles of type p on the bottom layer, Nb
p is the

number of particles of type p on the bottom layer at time t , k = 2πn/L, n ≡ (nx, ny)

and |n| = 1, 2, . . . , L/2 (the linear size of the box is fixed L = 40, and the ensemble average
〈· · ·〉 is done over 40 independent realizations). We have always measured the average quantity
Sp(k, t) = (Sp(kx, t) + Sp(ky, t))/2, where kx ≡ (k, 0) and ky ≡ (0, k).

For high tap amplitudes a stationary state is reached during the tap dynamics, and the
equilibrium dynamic structure factor is measured:

Sp(k) = Sp(k, t), (5)

where again p = 1 or 2, and · · · is the time average at stationarity.
In figure 6, the equilibrium structure factor, S1(k), for the small particles on the bottom

layer (a similar behaviour is observed for the large particles) is plotted for several values of
the tap amplitude T�. As we can see in the figure, S1(k) has a maximum for k = kmin(kmin =
2π/L), and this maximum increases as the tap amplitude T� decreases. We have fitted S1(kmin)

against T� by a power law, (T� − T ∗
� )−γ , where γ = 0.52 ± 0.20 and T ∗

� = 0.43 ± 0.05 (see
figure 7). Because the system does not reach a stationary state for T� very close to T ∗

� , our
data cannot establish whether T ∗

� corresponds to a real critical point or the divergence is only
apparent.

In figures 8 and 9, the dynamic structure factor, Sp(k, t), for the small and large
particles on the bottom layer, are respectively shown at a low tap amplitude, T� =
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Figure 6. The equilibrium structure factor, S1(k), for the small particles on the bottom layer as
a function of the wavevector k during the tap dynamics with tap duration τ0 = 10 MCS and tap
amplitude T� = 5, 1, 0.60, 0.45 (from bottom to top).

Figure 7. The maximum of the equilibrium structure factor for the small particles on the bottom
layer, S1(kmin), as a function of the tap amplitude T� can be fitted by a power law (the full line in
the figure) diverging at a tap amplitude T ∗

� = 0.43 ± 0.05. In the figure, S1(kmin) is plotted as a
function of T� − T ∗

� .

0.35, where a stationary state is not reached during the tap dynamics. As we can see
in the figures, the behaviour observed strongly resembles that of the phase separation
process [24]. During spinodal decomposition the position of the peak, km , moves to a
smaller value of k. Thus km is typically measured as a function of time during the dynamics.
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Figure 8. The dynamic structure factor, S1(k, t), for the small particles on the bottom layer during
the tap dynamics with tap duration τ0 = 10 MCS and tap amplitude T� = 0.35 as a function of the
wavevector k, for t = 100, 2000, 10 000, 40 000 (from bottom to top).

We calculate an equivalent quantity, the first moment of Sp(k, t):

k p
1 (t) ≡

∑
k k(t)Sp(k, t)∑

k Sp(k, t)
. (6)

Because this quantity is calculated using data acquired over the entire range of wavevectors,
k p

1 (t) can be calculated more accurately than the peak position k p
m(t). The two quantities k p

1
and k p

m should scale in the same way with time, so that either quantity is an acceptable measure
of the characteristic length in the system. Figure 10 shows the first moment k1

1(t) of S1(k, t)
plotted against time. As in the phase separation process, these data can be fitted by a power
law, t−α ; however, the exponent (α � 0.13) obtained is not consistent with the value 1/3
expected for late-stage growth in a system with a conserved order parameter [25]. This may
be due to the effects of gravity or to the fact that during the dynamics the numbers of small
and large particles on the bottom layer are not conserved (as we can see in figure 11, where the
fractions of small particles and large particles on the bottom layer are plotted against time t).

The tap amplitude T ∗
� is the value at which the maximum of the equilibrium structure

factor seems to diverge, and below which a slowing down of the dynamics is observed (below
T ∗

� the system does not reach a stationary state, and it shows properties strongly resembling
those of a phase separation process). In the framework of the statistical mechanics approach to
granular media, these results suggest the presence of a critical point in the effective Hamiltonian,
equation (3). This may be verified by a direct study of the effective Hamiltonian, using both
mean field approximations and Monte Carlo simulations [23].

It should be noted that our data cannot establish whether the system encounters a real
critical point, as the tap amplitude decreases, or whether it crosses the coexistence line near a
critical point. Other simulations with a different tap duration, τ0, are necessary to clarify this
question [23].
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Figure 9. The dynamic structure factor, S2(k, t), for the large particles on the bottom layer, during
the tap dynamics with tap duration τ0 = 10 MCS and tap amplitude T� = 0.35, as a function of
the wavevector k, for t = 100, 2000, 10 000, 40 000 (from bottom to top).

Figure 10. The first moment k1
1(t) of S1(k, t), as a function of t , during the tap dynamics with

tap duration τ0 = 10 MCS and tap amplitude T� = 0.35. The full line is a power law, t−α , with
an exponent α � 0.13. At long times the data can be also fitted by a power law with a higher
exponent, α � 0.18.

5. Conclusions

In this paper we have shown how a statistical mechanics approach in the manner of Edwards
can be used to interpret the behaviour of granular media. In the simple hard-sphere binary
mixture studied here, the phenomena of size segregation observed during the tap dynamics can
be well explained within such a statistical mechanics framework.
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Figure 11. The fractions of the small and large particles on the bottom layer, ρb
1 (t) and ρb

2 (t), as
a function of time, t , during the tap dynamics with tap duration τ0 = 10 MCS and tap amplitude
T� = 0.35.

Summarizing, N1 small particles and N2 large particles are initially prepared in a random
loose stable pack, and then evolved using tap dynamics. Both vertical and horizontal size
segregation are observed and, in particular, a crossover from the ‘Brazil nut’ effect to the
‘reverse Brazil nut’ effect. As the tap amplitude is reduced, larger clusters made up of one type
of particle appear, with properties strongly resembling those of a phase separation process.

By solving the effective Hamiltonian, equation (3), in a mean field approximation [20, 23],
the crossover from the ‘Brazil nut’ effect to the ‘reverse Brazil nut’ effect is found to correspond
to the drift of the minimum of the free energy, F = − ln Z , in the inherent space from negative
to positive values of the vertical segregation parameter, �h.

From the present data, horizontal segregation and its patterns instead seem to be due
to the presence of a critical point (see footnote 3) in the effective Hamiltonian and further
investigations are under way [23].
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[19] Dean D S and Lefèvre A 2001 Phys. Rev. Lett. 86 5639
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